翻訳と辞書
Words near each other
・ Extended Versions (The Monkees album)
・ Extended Video Graphics Array
・ Extended vocal technique
・ Extended warranty
・ Extended West Papuan languages
・ Extended Window Manager Hints
・ EXtended WordNet
・ Extended X-ray absorption fine structure
・ Extended-hours trading
・ Extended-range bass
・ Extended-spectrum penicillin
・ Extended-wear hearing aid
・ ExtendedancEPlay
・ Extender
・ Extender (ink)
Extender (set theory)
・ Extendible bond
・ Extendible cardinal
・ Extendible hashing
・ Extendicare
・ ExtendScript
・ ExtendSim
・ Extengineering
・ Extensa
・ Extensibility
・ Extensibility pattern
・ Extensible Application Markup Language
・ Extensible Authentication Protocol
・ Extensible Binary Meta Language
・ Extensible Computational Chemistry Environment


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Extender (set theory) : ウィキペディア英語版
Extender (set theory)
In set theory, an extender is a system of ultrafilters which represents an elementary embedding witnessing large cardinal properties. A nonprincipal ultrafilter is the most basic case of an extender.
A (κ, λ)-extender can be defined as an elementary embedding of some model ''M'' of ZFC (ZFC minus the power set axiom) having critical point κ ε ''M'', and which maps κ to an ordinal at least equal to λ. It can also be defined as a collection of ultrafilters, one for each ''n''-tuple drawn from λ.
==Formal definition of an extender==
Let κ and λ be cardinals with κ≤λ. Then, a set E=\ is called a (κ,λ)-extender if the following properties are satisfied:
# each ''Ea'' is a κ-complete nonprincipal ultrafilter on () and furthermore
## at least one ''Ea'' is not κ+-complete,
## for each \alpha\in\kappa, at least one ''Ea'' contains the set \.
# (Coherence) The ''Ea'' are coherent (so that the ultrapowers Ult(''V'',''Ea'') form a directed system).
# (Normality) If ''f'' is such that \\in E_a, then for some b\supseteq a,\ \)(t)\in t\}\in E_b.
# (Wellfoundedness) The limit ultrapower Ult(''V'',''E'') is wellfounded (where Ult(''V'',''E'') is the direct limit of the ultrapowers Ult(''V'',''Ea'')).
By coherence, one means that if ''a'' and ''b'' are finite subsets of λ such that ''b'' is a superset of ''a'', then if ''X'' is an element of the ultrafilter ''Eb'' and one chooses the right way to project ''X'' down to a set of sequences of length |''a''|, then ''X'' is an element of ''Ea''. More formally, for b=\, where \alpha_1<\dots<\alpha_n<\lambda, and a=\\}, where ''m''≤''n'' and for ''j''≤''m'' the ''ij'' are pairwise distinct and at most ''n'', we define the projection \pi_:\\mapsto\\}\ (\xi_1<\dots<\xi_n).
Then ''E''''a'' and ''Eb'' cohere if
: X\in E_a\Leftrightarrow \\in E_b.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Extender (set theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.